
Surviving Client/Server:
Managing User Logins, Part 1
by Steve Troxell

Any client/server database
application which is sensitive

to user security is going to be very
concerned about managing the
login process and recording cer-
tain facts about the currently
logged in user. The projects I’ve
been involved with until recently
are casino management applica-
tions designed to handle monetary
transactions and transfer of funds
for multi-million dollar casinos.
Keeping track of who is doing what
to that money is a very big concern.
Some features we incorporate into
our software products include:
➣ Requiring users to change their

password after a certain num-
ber of days (the number of days
varying from person to person);

➣ Posting all logins (including un-
successful logins) and logouts,
among many other things, to an
audit trail table in the database;

➣ Controlling which menu items
and modules are visible to the
user based on their particular
access rights to the system;

➣ Setting various internal limits
and flags based on the user’s
authorization to perform tasks.

Obviously, we want to make sure
all these tasks are handled consis-
tently and accurately by all the
software in our product line, so
that means reusable code. How-
ever, we also want to retain the
capability for a particular applica-
tion to do specific processing
related to logging in and out if
needed, so that means something
like event handlers. Finally, we
want to minimize our dependency
on any particular back end server,
so that means not relying on
vendor-supplied user identifiers,
password management or audit
systems.

Functional Requirements
We’re going to develop a login man-
ager to take care of all the dirty

work of user connections. The
specific requirements are listed in
Figure 1. This manager is a scaled-
down version of the system
TurboPower’s Custom Group actu-
ally uses for our casino software –
the requirements for your system

may be different. The purpose here
is to show you a way of handling
some login related activities con-
sistently across a product line.
From this, you should have plenty
of ideas about how to implement
your specific needs.

For Login:
➣ Log out existing user (if any).
➣ Make connection to database(s) for current user.
➣ If connection unsuccessful:

➣ Allow application-specific processing of unsuccessful login,
➣ Post an unsuccessful login to the system audit trail.

➣ Load database values for current user (full name, date password
last changed, etc).

➣ Check to see if user’s password has expired; if so, force them to
change password or abort login.

➣ Allow application-specific login events to occur (these may abort
the login if needed).

➣ Post successful login to the system audit trail.
➣ Update last login date/time for current user.
➣ Allow application-specific post-login events to occur (these cannot

abort the login).

For Logout:
➣ Allow application-specific logout events to occur (these may abort

the logout if needed).
➣ Break the connection to the database(s) for the current user.
➣ Post completed logout in the system audit trail.

➤ Figure 2

➣ Connect the TDatabase to the server.
➣ Post login to the database audit trail (even if unsuccessful).
➣ Post logout to the database audit trail.
➣ Determine if the user’s password has expired, if so provide change

password dialog and reset next date of expiration.
➣ Allow user to voluntarily change password and reset next date of

expiration.
➣ Post the user’s last date and time of login.
➣ Obtain the user’s system ID number (to be associated with all

transactions posted during this session).
➣ Allow runtime override of alias definition for the database to

connect to.
➣ Allow runtime override of alias definition for server to connect to.
➣ Provide centralized event-handlers for each application to perform

specific tasks during login and logout.

➤ Figure 1: Login Manager requirements

32 The Delphi Magazine Issue 16

Functional Design
Our login manager will have three
main functions: login, logout and
voluntary password change. We’re
going to save password changing
for next month, so for now we’ll just
be concerned with login and
logout. Figure 2 shows the specifi-
cation of these functions.

The TDatabase component alone
is inadequate to accomplish this.
Too much code would have to be
crammed into the OnLogin event
handler that wouldn’t be reusable
by other applications sharing the
same database. The handling of da-
tabase parameter lists and login
parameter lists is cumbersome
(and again isn’t reusable across
applications). There’s no event
handler for logging out, so that
function must be coded inde-
pendently of the rest of the connec-
tivity functions in TDatabase.

It’s obvious that we could make
a descendant component from
TDatabase and add functionality to
cover all these objections. That is
certainly an acceptable approach.
However, there would still be prob-
lems if your system must connect
to multiple databases. For exam-
ple, the company may be migrating
from an AS/400 system to an Oracle
client/server system and parts of
both must be accessible to the
front-end.

Our login manager will be imple-
mented as a class called TLoginMan-
ager and instantiated as a
permanent system variable called
LoginManager (just as Delphi’s
Application variable is a perma-
nent instantiation of the TApplica-
tion class). Why not make a
standard component that we can
drop onto any form from the com-
ponent palette? Because we’re go-
ing to use login information such as
username, proper name and user
ID throughout the system and this
data must persist. Each time we
drop a component onto a form, we
get a local instance of that compo-
nent – the data isn’t persistent
between forms.

Any application using LoginMan-
ager will still use its own TDatabase
component for connecting to the
database: all application data ac-
cess is done normally through

TDatabase and other data compo-
nents. However, the application
will not directly connect and dis-
connect to the database by setting
TDatabase.Connected. Instead, the
application “registers” itself with
LoginManager at program startup by
passing pointers to its TDatabase
component and event handler rou-
tines which will take care of appli-
cation specific logic. Listing 1
shows typical code in the applica-
tion’s main form to register with
LoginManager. MainDB is a TDatabase
property of LoginManager and the
Onxxxx properties are all event
handlers for LoginManager.

Because of our requirement to
post logins and logouts to the audit
trail, we also want to identify which
program in the product line the
user was logging in from. To ac-
commodate this, each application
is assigned a unique identifier
which is passed along to the audit
trail. As part of the registration
process, we inform LoginManager of
the application’s identifier through
LoginManager.ApplicationID.

When the application needs to
login a user, it captures the user-
name and password with a local
dialog of some sort and passes
those values into LoginManager.
Login. This method performs the

actual database connection by set-
ting the username and password
parameters in the application’s
TDatabase component and then set-
ting the Connected property to True.

Database Design
In order to support the require-
ments listed in Figure 1, we must
have some data structures in place
to record this information.

For every user we need to keep
track of their username, proper
name, user ID number, date/time of
last login, date/time of last pass-
word change and how long their
password remains valid before
requiring a change. For this pur-
pose, we define a table as shown in
Listing 2.

You may wonder why we’re stor-
ing the user’s login name but not
their password. We’ll let the
RDBMS manage the true username
and password for login purposes
and we’ll use the RDBMS’s API to
change users’ passwords. Our sup-
plementary table of user informa-
tion includes the username field in
order to associate the user logging
in with a record in our database.

In addition to user information,
we need an audit trail table to re-
cord every time a user logs in, logs
out, changes their password, etc.

procedure TMain.FormCreate(Sender: TObject);
begin
 { Register with the login object }
 with LoginManager do begin
 { You should have a global constant in your applications }
 ApplicationID := 4;
 { ApplicationDB is the name of the app’s TDatabase component }
 MainDB := ApplicationDB;
 { These are local app procedure names to handle login events }
 OnLoggingIn := LoginManagerLoggingIn;
 OnLogin := LoginManagerLogin;
 OnLoggingOut := LoginManagerLoggingOut;
 OnLogout := LoginManagerLogout;
 OnBadLogin := LoginManagerBadLogin;
 end;
end;

➤ Listing 1

CREATE TABLE Users(
 UserID int, /* System ID number */
 Username char(30), /* Login user name */
 FirstName char(20), /* User’s proper first name */
 LastName char(20), /* User’s proper last name */
 DateLastLogin datetime, /* Date and time of last login */
 DateLastPasswordChange datetime, /* Date and time of last
 password change */
 PasswordLifespan smallint) /* Number of days between forced
 password changes */

➤ Listing 2

December 1996 The Delphi Magazine 33

To support the audit trail, we de-
fine a table as shown in Listing 3.

Obviously, these tables are sim-
plified for illustration. In reality,
the tables you use for your system
may contain much more informa-
tion and may be organized very
differently.

TLoginManager
Now we’re ready to start building
our login manager. TLoginManager is
implemented in two units: LOGIN is
a standard Delphi unit and con-
tains the class definition and imple-
mentation of all the class methods.
DMLOGIN is a data module (called
LoginDM) and contains all data com-
ponents and code to support the
login/logout processes (for exam-
ple, queries to post messages in the
audit trail, change the last login
date of the user, etc). DMLOGIN con-
tains only data components

relevant to TLoginManager, it is not
accessible by the application.

Listing 4 shows the interface to
the TLoginManager class. This in-
cludes all the class fields and the
basic methods and properties
(we’ll build these up as we go
along). We won’t get into the spe-
cifics of component construction
here, our focus is to understand
the database mechanisms.

As you can see, the LoginManager
global variable is created automat-
ically by the initialization block
of the unit. Note that we need not
free the variable in a finalization

block, because it is automatically
freed when its owner, the Applica-
tion variable, is freed. Also, within
TLoginManager’s constructor meth-
od we are creating the LoginDM data
module (again, we don’t have to
explicitly free it). This keeps the
data module hidden from the call-
ing application. Otherwise, the
application would have to use the
data module unit and set it for
auto-creation at program startup.

When the application registers
its TDatabase component with
LoginManager, the SetMainDB routine
loops through the LoginDM data

unit Login;
interface
uses Classes, Forms, SysUtils, DB, DBTables;
const
 cNoUserID = -1; { Token for no user connected }
 cNoAppID = -1; { Token for no application defined}
 DefNumAttempts = 3; { Default number of login retry attempts }
type
 TLoginEvent = procedure(Sender: TObject; UserName: string;
 Password: string) of object;
 TLoggingInEvent =
 procedure(Sender: TObject; UserName: string;
 Password: string; var Cancel: Boolean) of object;
 TLoggingOutEvent = procedure(Sender: TObject;
 var Cancel: Boolean) of object;
TLoginManager = class(TComponent)
 protected
 { Identifier for the application }
 FApplicationID: LongInt;
 { Date/time of the last login for this user }
 FDateLastLogin: TDateTime;
 { True if user’s password has expired on this login }
 FPasswordExpired: Boolean;
 { Pointer to the application’s TDatabase component }
 FMainDB: TDatabase;
 { Number of login retries allowed }
 FNumAttemptsAllowed: Integer;
 { Number of failed login attempts so far }
 FNumFailedAttempts: Integer;
 { User’s password }
 FPassword: string;
 { Proper first name for user }
 FUserFirstName: string;
 { Proper full name for user }
 FUserFullName: string;
 { Proper last name for user }
 FUserLastName: string;
 { System ID for user }
 FUserID: LongInt;
 { Login username for user }
 FUsername: string;
 FOnLogin: TLoginEvent; { Event-handler }
 FOnLoggingIn: TLoggingInEvent; { Event-handler }
 FOnLogout: TNotifyEvent; { Event-handler }
 FOnLoggingOut: TLoggingOutEvent; { Event-handler }
 FOnBadLogin: TNotifyEvent; { Event-handler }
 procedure SetMainDB(Value: TDatabase);
 public
 constructor Create(AOwner: TComponent); override;
 procedure Login(UserName, Password: string);
 procedure Logout;
 property ApplicationID: LongInt read FApplicationID
 write FApplicationID;
 property MainDB: TDatabase read FMainDB write SetMainDB;
 property NumAttemptsAllowed: Integer
 read FNumAttemptsAllowed

 write FNumAttemptsAllowed default defNumAttempts;
 property Password: string read FPassword;
 property UserFirstName: string read FUserFirstName;
 property UserFullName: string read FUserFullName;
 property UserLastName: string read FUserLastName;
 property UserID: LongInt read FUserID;
 property Username: string read FUsername;
 property OnLogin: TLoginEvent
 read FOnLogin write FOnLogin;
 property OnLoggingIn: TLoginEvent
 read FOnLoggingIn write FOnLoggingIn;
 property OnLogout: TNotifyEvent
 read FOnLogout write FOnLogout;
 property OnLoggingOut: TLoggingOutEvent
 read FOnLoggingOut write FOnLoggingOut;
 property OnBadLogin: TNotifyEvent
 read FOnBadLogin write FOnBadLogin;
 end;
var LoginManager: TLoginManager;
implementation
uses
 Controls, Dialogs, DMLogin;
{ TLoginManager }
constructor TLoginManager.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 { Establish connection to the data module code }
 LoginDM := TLoginDM.Create(Self);
 FApplicationID := cNoAppID;
 FUserID := cNoUserID;
 FUserFullName := ’’;
 FUserFirstName := ’’;
 FUserLastName := ’’;
 FNumAttemptsAllowed := DefNumAttempts;
end;
procedure TLoginManager.SetMainDB(Value: TDatabase);
var I: Integer;
begin
 if Value <> FMainDB then begin
 FMainDB := Value;
 { Initialize the dataset components in the data module }
 for I := 0 to LoginDM.ComponentCount - 1 do
 if LoginDM.Components[I] is TDBDataSet then
 with TDBDataSet(LoginDM.Components[I]) do begin
 Active := False;
 DatabaseName := FMainDB.DatabaseName;
 end;
 end;
end;
{ Remainder of routines not implemented yet }
initialization
 LoginManager := nil;
 LoginManager := TLoginManager.Create(Application);
end.

CREATE TABLE AuditTrail(
 AuditTrailID int identity, /* Auto-increment key field */
 ApplicationID smallint, /* Identifies app originating event */
 EventID smallint, /* Identifies the event (login, logout,
 change password, etc) */
 Timestamp datetime, /* Date and time of the event */
 UserID int, /* Identifies user originating event */
 Description varchar(255)) /* Message associated with event */

➤ Listing 3

➤ Listing 4

34 The Delphi Magazine Issue 16

module (which contains all the
data access components support-
ing TLoginManager) and connects
them to the application’s TDatabase
component via the DatabaseName
property. Remember, TLoginMan-
ager and the LoginDM data module
have no TDatabase of their own,
therefore we cannot assign the
data module’s data components to
a database at design time.

Database Connections
The first thing we need to do is
implement enough of Login and
Logout to actually connect and dis-
connect the database. To support
this, we’ll add four protected meth-
ods to TLoginManager as shown in
Listing 5. It may seem odd to have
two layers of code to connect and
two layers to disconnect. However,

this technique affords greater flexi-
bility if more than one database is
used in the application.

With our two layer approach,
ConnectDB is responsible for making
the connection for a single
TDatabase component (likewise for
DisconnectDB). If we have a require-
ment for multiple databases, we
simply add code in Connect and
Disconnect for each database. Since
we only call Connect and Disconnect
throughout TLoginManager to
perform these tasks, we have en-
capsulated the points where we
may have to make changes for mul-
tiple databases. We’ll see exactly
how to do this next month.

The Login Method
Connect and Disconnect are not
called by the application, they are

internal to TLoginManager. The ap-
plication only operates through
Login and Logout, so let’s work on
those next. Our first cut at the Login
method is shown in Listing 6. All we
are concerned with at this point is
handling the connection to the
database and counting failed login
attempts.

The first thing Login does is call
Logout to disconnect any existing
user from the system. We do this to
force any logout-specific actions to
occur (like posting to the audit trail
that the previous user was logged
out). Then we enter a try-except
block to trap any exceptions that
occur as we attempt to login. This
allows us to record and count bad
login attempts. We call our Connect
method to actually attempt to log
into the database with the given
username and password. We rely
on the RDBMS to validate the login
and produce an exception if it fails.

If the login attempt fails, we re-
port the exception back to the user
using HandleException. This dis-
plays the exception message and
removes it from the exception
stack. Why do this rather than re-
raise the exception at the end of
our except block? Because addi-
tional messages may be forthcom-
ing in our error-handling code and
we want to be sure that the original
error that caused the login to fail is
shown first.

After reporting the failed login,
we disconnect from the database.
In principle we were never con-
nected to begin with, but if we in-
corporate the multiple database
logic we talked about earlier, we
might have connected to one or
more databases but failed on an-
other. This way we ensure that we
properly disconnect from every-
thing we might be attached to.
Also, later as we build up our Login
method, we’ll see that we might
have errors that result in a failed
login even after we’ve successfully
connected to the database.

Normally, after a failed login
attempt, the application will re-
main running to allow the user to
try again. However, if the number
of unsuccessful attempts exceeds
the threshold, we terminate the
application. The behavior you

procedure TLoginManager.Connect;
begin
 ConnectDB(FMainDB, FUsername, FPassword);
end;
procedure TLoginManager.ConnectDB(DB: TDatabase; Username, Password: String);
begin
 if DB <> nil then
 with DB do begin
 Connected := False;
 LoginPrompt := False; { Disable Delphi’s login dialog }
 Params.Values[’USER NAME’] := Username;
 Params.Values[’PASSWORD’] := Password;
 KeepConnection := True;
 Connected := True;
 end;
end;
procedure TLoginManager.Disconnect;
begin
 DisconnectDB(FMainDB);
end;
procedure TLoginManager.DisconnectDB(DB: TDatabase);
begin
 if DB <> nil then
 with DB do begin
 KeepConnection := False;
 Connected := False;
 end;
end;

➤ Listing 5

procedure TLoginManager.Login(UserName, Password: String);
begin
 Logout; { Logout any existing user }
 FUsername := Username;
 FPassword := Password;
 try
 { Any exception occurring within this block is considered a failed login attempt }
 Connect;
 FNumFailedAttempts := 0;
 except { Failed login attempt }
 on E: Exception do begin
 Application.HandleException(Self);
 Disconnect;
 Inc(FNumFailedAttempts);
 if FNumFailedAttempts >= FNumAttemptsAllowed then begin
 MessageDlg(IntToStr(FNumFailedAttempts) + ’ login attempts have failed.’+
 ’ Shutting down the application.’, mtError, [mbOk], 0);
 Application.Terminate;
 end;
 FUsername := ’’;
 FPassword := ’’;
 end;
 end;
end;

➤ Listing 6

December 1996 The Delphi Magazine 35

incorporate for your system may
be more sophisticated. You might
not allow the application to be re-
entered until a certain amount of
time has elapsed.

The Logout Method
The basic Logout method is vastly
simpler and is shown in Listing 7.
All we have to do is call Disconnect.
But don’t worry, Logout will have
much more to do later.

Implementing Data Access
Now we have a rudimentary login
manager, but it’s no big deal yet. It
doesn’t do much more than set
TDatabase.Connected. What’s going
to make this technique really use-
ful is looking up specific user data
and posting events in the data-
base’s audit trail. Let’s turn our fo-
cus now to the data access
functions required by TLoginMan-
ager. The LoginDM data module con-
tains all the data components
specifically used by TLoginManager

procedure TLoginManager.Logout;
begin
 if FUserID <> cNoUserID then begin
 Disconnect;
 FUserID := cNoUserID; { Signal that no user is logged in }
 end;
end;

➤ Figure 3

unit DMLogin;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, DB, DBTables, Login;
const
 evtLoginSuccessful = 100;
 evtLoginFail = 101;
 evtLogout = 102;
 evtChangePassword = 103;
type
 TLoginDM = class(TDataModule)
 qryGetUserValues: TQuery;
 qryPostAuditTrail: TQuery;
 qrySetLastLoggedInDate: TQuery;
 protected
 FLogin: TLoginManager;
 public
 constructor Create(AOwner: TComponent); override;
 procedure GetUserValues(var UserID: LongInt;
 var FirstName: String; var LastName: String;
 var DateLastLogin: TDateTime;
 var PasswordExpired: Boolean);
 procedure PostAuditTrail(EventID: Integer;
 EventMsg: String);
 procedure PostUserLoginDate;
 end;
var LoginDM: TLoginDM;
implementation
{$R *.DFM}
constructor TLoginDM.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 if not (AOwner is TLoginManager) then
 raise Exception.Create(’TLoginDM cannot be created ’+
 ’independently of TLoginManager.’);
 FLogin := AOwner as TLoginManager;
end;
procedure TLoginDM.GetUserValues(var UserID: LongInt;
 var FirstName: String; var LastName: String; var
 DateLastLogin: TDateTime; var PasswordExpired: Boolean);
{ Returns key information about the current user }
begin
 { Query used:
 SELECT UserID, FirstName, LastName, PasswordLifespan,
 DateLastPasswordChange, DateLastLogin
 FROM Users
 WHERE Username = :Username }
 with qryGetUserValues do begin
 Close;

 ParamByName(’Username’).AsString := FLogin.Username;
 Open;
 try
 UserID := FieldByName(’UserID’).AsInteger;
 FirstName := FieldByName(’FirstName’).AsString;
 LastName := FieldByName(’LastName’).AsString;
 DateLastLogin :=
 FieldByName(’DateLastLogin’).AsDateTime;
 PasswordExpired := False; { we’ll expand this next month }
 finally
 Close;
 end;
 end;
end;
procedure TLoginDM.PostAuditTrail(EventID: Integer;
 EventMsg: String);
{ Writes an entry in the audit trail }
begin
 { Query used:
 INSERT INTO AuditTrail
 (ApplicationID, EventID, Timestamp, UserID,
 Description)
 VALUES
 (:ApplicationID, :EventID, GetDate(),
 :UserID, :Description)
 Note: AuditTrailID field is an auto-increment field }
 with qryPostAuditTrail do begin
 ParamByName(’ApplicationID’).AsInteger :=
 FLogin.ApplicationID;
 if FLogin.UserID = cNoUserID then
 ParamByName(’UserID’).Clear
 else
 ParamByName(’UserID’).AsInteger := FLogin.UserID;
 ParamByName(’EventID’).AsInteger := EventID;
 ParamByName(’Description’).AsString := EventMsg;
 ExecSQL;
 end;
end;
procedure TLoginDM.PostUserLoginDate;
{ Writes current date as the user’s “date last logged in” }
begin
 { Query used:
 UPDATE Users SET DateLastLogin = GetDate()
 WHERE UserID = :UserID }
 with qrySetLastLoggedInDate do begin
 ParamByName(’UserID’).AsInteger := FLogin.UserID;
 ExecSQL;
 end;
end;
end.

➤ Listing 7

➤ Listing 8

(see Figure 3) [If you are working
with Delphi 1 you can ‘fake’ a data
module using a regular Delphi form
which is never displayed to the user.
Editor]. Remember that these data
components are not bound to a
database at design time; they get
linked to the application’s TDat-
abase component via TLoginMan-
ager.SetMainDB.

Listing 8 shows the complete
LoginDM data module. If you look at
the Create method, you’ll see that
LoginDM is tightly bound to TLogin-
Manager. TLoginDM includes a pro-
tected field called FLogin of type
TLoginManager to retain a pointer to
LoginManager. With this, the data
module can directly manipulate
the public fields and properties of

TLoginManager, reducing the
amount of data passing required to
communicate between these com-
ponents. Capturing this pointer is
accomplished in TLoginDM.Create
as shown in Listing 8. Since TLogin-
Manager.Create passes Self as the
owner when it in turn calls
TLoginDM.Create (see Listing 4),
then the AOwner property in

36 The Delphi Magazine Issue 16

TLoginDM.Create can be typecast
and set in TLoginDM.FLogin to retain
a pointer back to LoginManager.
Confused? Just keep in mind that
FLogin always refers to LoginMan-
ager.

One of the jobs of LoginManager is
to get some information about the
current user from the database. In
LoginDM, the query qryGetUserVal-
ues looks up the record in the Users
table and returns the info we want.
The listing shows the GetUserVal-
ues procedure which runs this
query and passes back the data to
LoginManager (since the return
fields are protected in TLoginMan-
ager, we can’t directly write to
them from here). We’ll deal with
expired passwords next month,
so for now we’ll always set Password
Expired to False.

The other significant data access
required by TLoginManager is to
write audit trail records for various
login events. Each distinct event
that could appear in the audit trail
has a unique code and is defined as
a constant at the top of the DMLogin
unit.

All audit trail events are written
to the AuditTrail table through the
PostAuditTrail procedure. This
procedure encapsulates a query
which simply contains a SQL INSERT
statement to write the record in the
table. Here, we use the GetDate()
function provided with Microsoft
SQL Server to return the current
date and time from the server. If
available, it’s important to use a
server-based function to obtain
timestamping information. This en-
sures a consistent timestamp from

a single source no matter how the
date and time are set on the indi-
vidual workstations.

Finally, we’ll need to write the
current date and time in the Users
table to note the most recent login
by this user. This is done through
the PostUserLoginDate procedure.

Event Handlers
Event handlers are a basic function
of component design. The calling
program will register its local event
handler procedures with LoginMan-
ager (see Listing 1) and LoginMan-
ager will simply execute them at
the proper points in the process.

Putting It All Together
Listing 9 shows the completed
Login and Logout methods for
TLoginManager (for this month),
pulling in all the data access and
event-handler code we’ve been
discussing.

Figures 4 and 5 show a small
demo program that illustrates how
all this works.

The Application menu contains
items for Login and Logout. Once a
user clicks the Application | Login
menu item, the application ap-
pears as shown in Figure 4. No user
is logged in at this point and the
status bar at the bottom verifies
that. The login dialog overlaying
the application is a simple dialog to
capture username and password
and nothing more: there is no logic
behind it.

Once the user clicks OK to actu-
ally login, the LoginManager takes
over, connects the application to
the database, updates the status
bar and activates a table to popu-
late the data-aware grid shown in
Figure 5. This application is
displaying the contents of the
AuditTrail table. You can see
matched login and logout pairs
(events 100 and 102 respectively)
for different users. The last line in
the audit trail is the login event for
the user who made this screen
capture.

If the user clicks Application |
Logout from the menu, the grid dis-
appears and the status bar returns
to the state shown in Figure 4.

The application code to accom-
plish all this is shown in Listing 10.

procedure TLoginManager.Login(UserName, Password: String);
var Cancel: Boolean;
begin
 Logout;
 FUsername := Username;
 FPassword := Password;
 try
 { Any exception occurring within this block is considered a failed login attempt }
 Connect;
 FUserID := cNoUserID;
 LoginDM.GetUserValues(FUserID, FUserFirstName, FUserLastName,
 FDateLastLogin, FPasswordExpired);
 FUserFullName := FUserFirstName + ’ ’ + FUserLastName;
 if Assigned(FOnLoggingIn) then begin
 FOnLoggingIn(Self, UserName, Password, Cancel);
 if Cancel then begin
 Disconnect;
 Exit;
 end;
 end;
 LoginDM.PostAuditTrail(evtLoginSuccessful, ’’);
 LoginDM.PostUserLoginDate;
 FNumFailedAttempts := 0;
 except
 on E: Exception do begin
 { Failed login attempt }
 Application.HandleException(Self);
 Disconnect;
 if Assigned(FOnBadLogin) then
 FOnBadLogin(Self);
 Inc(FNumFailedAttempts);
 if FNumFailedAttempts >= NumAttemptsAllowed then begin
 MessageDlg(IntToStr(FNumFailedAttempts) + ’ login attempts have failed.’+
 ’ Shutting down the application.’, mtError, [mbOk], 0);
 Application.Terminate;
 end;
 FUserID := cNoUserID;
 FUsername := ’’;
 FPassword := ’’;
 Exit;
 end;
 end;
 if Assigned(FOnLogin) then
 FOnLogin(Self, UserName, Password);
end;
procedure TLoginManager.Logout;
var Cancel: Boolean;
begin
 if FUserID <> cNoUserID then begin
 if Assigned(FOnLoggingOut) then begin
 Cancel := False;
 FOnLoggingOut(Self, Cancel);
 if Cancel then Exit;
 end;
 Disconnect;
 if Assigned(FOnLogout) then FOnLogout(Self);
 LoginDM.PostAuditTrail(evtLogout, ’’);
 FUserID := cNoUserID;
 end;
end;

➤ Listing 9

December 1996 The Delphi Magazine 37

Conclusion
Many database systems may not
require this much in the way of
managing connections to the data-
base. With more sophisticated or

➤ Below: Figure 5➤ Above: Figure 4

procedure TfrmMain.LoginManagerLogin(Sender: TObject;
 Username: string; Password: string);
begin
 StatusLine.Panels[0].Text :=
 ’Username: ’ + LoginManager.Username;
 StatusLine.Panels[1].Text := LoginManager.UserFullName;
 StatusLine.Panels[2].Text := ’Connected’;
 tblAuditTrail.Open;
 grdAuditTrail.Visible := True;
 { Enable Application | Logout menu item }
 ApplicationLogoutItem.Enabled := True;
end;
procedure TfrmMain.LoginManagerLogout(Sender: TObject);
begin
 StatusLine.Panels[0].Text := ’No User’;
 StatusLine.Panels[1].Text := ’’;
 StatusLine.Panels[2].Text := ’Not Connected’;
 { Disable Application | Logout menu item }
 ApplicationLogoutItem.Enabled := False;
 grdAuditTrail.Visible := False;
end;
procedure TfrmMain.LoginManagerBadLogin(Sender: TObject);
begin
 ShowMessage(’That was a bad login. Naughty, naughty.’);
end;
procedure TfrmMain.FormCreate(Sender: TObject);
begin
 { Register with LoginManager }
 with LoginManager do begin
 ApplicationID := 1;
 MainDB := dbAppMain;

 OnLogin := LoginManagerLogin;
 OnLogout := LoginManagerLogout;
 OnBadLogin := LoginManagerBadLogin;
 end;
end;
procedure TfrmMain.FormClose(Sender: TObject;
 var Action: TCloseAction);
{ Make sure shutting down the app causes a logout }
begin
 LoginManager.Logout;
end;
procedure TfrmMain.ApplicationLoginItemClick(
 Sender: TObject);
{ Event-handler for Application | Login menu item }
var
 Username, Password: string;
begin
 if LaunchLoginDialog(Username, Password) = mrOK then
 LoginManager.Login(Username, Password);
end;
procedure TfrmMain.ApplicationLogoutItemClick(
 Sender: TObject);
{ Event-handler for Application | Logout menu item }
begin
 LoginManager.Logout;
end;
procedure TfrmMain.ExitMenuClick(Sender: TObject);
begin
 Close;
end;

➤ Listing 10

sensitive client/server projects,
you may find the need to be more
meticulous about user connec-
tions. The TLoginManager project
was intended to show you some of

the concerns that may arise in such
a project and one technique for
handling them.

The main advantage of this
object-oriented approach is that it
encapsulates all the business rules
for user connections in one place.
This makes it easier to maintain
and extend the rules as the system
evolves, particularly if more than
one application is connecting to
the same database system.

Next Month
A glance at the requirements
shown in Figures 1 and 2 show that
we’re not quite done yet.

Next month, we’ll finish up our
login manager. We’ll discuss more
of the practical uses of the login
event handlers, post bad login at-
tempts to the audit trail (a neat
trick since we can’t legally connect
to the database), deal with expired
passwords, multiple databases
and add a few more odds and ends
to extend the capabilities of
LoginManager.

Steve Troxell is a Senior Software
Engineer with TurboPower
Software. He can be reached by
email at stevet@tpower.com or on
CompuServe at 74071,2207

38 The Delphi Magazine Issue 16

	Functional Requirements
	Functional Design
	Database Design
	TLoginManager
	Database Connections
	The Login Method
	The Logout Method
	Implementing Data Access
	Event Handlers
	Putting It All Together
	Conclusion
	Next Month

